

2nd Grid Integration of Offshore Wind Energy

Designing and Operating Wind Farm Clusters

Dipl.-Ing. Mariano Faiella, Fraunhofer IWES Dec, 10th 2012 - Grand Elysée Hotel Hamburg/Germany

Content

- Clustering Offshore Wind Farms
- Ancillary Services Provided by Wind Farm Clusters
- Software Tools
- Conclusions

Clustering Offshore Wind Farms

- High availability of Ancillary Services due to:
 - Smoothing effect over large areas
 - Higher predictability (in case of reduced variability)
- Higher opportunities to participate in markets
- Higher complexity for optimizations

Voltage Problems

Grid Code Requirements

Fault-Ride Through (LVRT-HVRT)

WTG should stay connected in case of a grid fault

LVRT:

HVRT:

Source: TransmissionCode 2007. VDN e.V.

Voltage support in case of a normal grid operation

defining possible operational ranges

Frequency Control

Grid Code Requirements

- Continuous balancing of power
- Different types of control reserve

Positive and negative reserve is necessary

Sources: ENTSO-E NCfG/ ENTSO Balance Management Harmonisation and Integration; Amprion GmbH (http://www.amprion.net/en/control-energy)

Frequency Support

Grid Code Requirements

2

Frequency support in case of a normal grid operation

decreasing active power output of the WTGs in order to offer a positive contribution to the control reserve

Sources: Wind Turbines Connected to Grids with Voltages above 100 kV (Energienet.dk)

Technical Research and Solutions: Fraunhofer IWES RAVF RESEARCH AT ALPHA VENTUS Clusters C WindGrid HE EUROPEAN ENERGY RESEARCH ALLIANCE ESIGN TOOLS FOR OFESHORE WIND FARM CLUSTER

Research: Wind on the Grid

Operational Tool

- Objective → preparation of European electricity system for large-scale integration of wind energy.
- Design, development & validation of new tools.
- Wind Farm Cluster Management System (WCMS).
- Development of control strategies.
- Associated methodology for providing power reserve with wind power.

TSO \rightarrow Wind Farms 1 - WCMS TSO Level 2 - WCMS WF operator level 3 - WF controller 4 - Wind Farms Wind Farms \rightarrow TSO 1 - WCMS TSO Level 2 - WCMS WF operator level

- 3 WF controller
- 4 Wind Farms

Research: Wind on the Grid

Operational Tool

Source: Power Reserve Provision with Wind Farms - A. Gesino

Operational & Simulation Tool

Providing control possibilities of the WF relating its onshore PCC

Congestion or voltages problems could be detected in advance due to forecasts

Operated as an expanded Wind Farm controller

Operational & Simulation Tool

Providing control possibilities of the WF relating its onshore PCC

Operational & Simulation Tool

Providing control possibilities of the WF relating its onshore PCC

Source: Screenshot (cut-out) of the developed program

Operational & Simulation Tool

Providing control possibilities of the WF relating its onshore PCC Examples:

 P_{max} , cos ϕ = 0.98 ind. P_{max} , Q = -5 Mvar P = 30 MW, Q = -10 Mvar

60 50 50 50 40 40 40 in MW in MW Active Power in MW Power Active Power 30 30 30 ۲ Active I 20 20 20 10 10 10 0 L -50 0 L -50 0 L -50 -40 -30 -40 -30 -40 -30 -20 10 20 30 -10 0 inductive inductive inductive Reactive Power in MVar capacitive

Operational & Simulation Tool

Operational & Simulation Tool

Providing voltage and utilization information

What is **EERA-DTOC**

Software tool > for design phase

Integrated and validated design tool combining the state-of-the-art:

- Wake Effects (WP1)
- Yield (WP3)
- Electrical models (WP2)

Product Vision

A robust, efficient, easy to use and flexible tool created to facilitate the optimized design of individual and clusters of offshore wind farms.

Research: EERA-DTOC

Design Tool

Target (main) Users

The prospective users of EERA DTOC fall into the following primary categories: **Strategic Planners**

- Design process at the highest level
- Commonly responsible the definition of project boundaries
- Determine what infrastructure should be created to accommodate projects
- Goals of a strategic planner may include:
 - Achieving a legislated target for installed capacity.
 - Minimizing the cost of energy to consumers.
 - Ensuring the security of the supply of energy to consumers.

Project Developers

- working within the broad project definitions determined by strategic planners.
- The primary goal of a project developer will be to maximize their financial return.

WP2: "Interconnection Optimisation and Power Plant System Services"

Objectives:

- to develop a design tool and procedure for the optimisation of the electrical design of offshore wind farm clusters...
-including the provision of power plant system services by the cluster.

Participants in WP2:

Research: EERA-DTOC

Design Tool

Conclusions/ Possible solutions

- Need for technical and operational improvements
- WPP/WFC shall provide (more) Ancillary Services in future scenarios
- WPP/WFC can/ shall take part in congestion management strategies
- ICT solutions should be improved/ widely used → SmartGrids
- Integration of commercial and technical platforms is required
- Advanced control techniques and software solutions are required

